‘New insights into the Architectural Development of the southern Cloncurry IOCG Terrain - Controls and Timing of Mineralization’

Mark Hinman
DMQ Project - southern Cloncurry Belt
‘Prospectivity - Mineability - Viability’
Overall aims to reduce risk of exploring for large, mass-mineable deposits at depth in the southern Cloncurry Belt.

Reported here:
(1) Updated solid geology, structural, & tectono-stratigraphic interpretation which builds on the published GSQ 100K solid geology, utilizing the smaller scale prospect geology & detailed geophysics made available by Chinova

(2) Some resource-scale examples of timing and controls on IOCG-style mineralisation

DMQ Project Team
Dr Travis Murphy (Exploration & Mine Geology)
Dr Mark Hinman (Exploration & Mine Geology)
Dr Mark Pirlo (Exploration Geochemistry)
John Donohue (Exploration Geophysics)
Mark Jones (Software Engineering & Database Support)

Acknowledgements
Chinova ... data including detailed geophysics, detailed prospect mapping & project ddh databases
GSQ ... pre-release 100K mapping (Selwyn, Mount Angelay), geochron database
Historic Mapping ... Leishman, 1970s-80s; Searl, 1952; ... & others
Personal ... understanding gained during contract work for Ivanhoe, Inova & Chinova, 2011-2015
Deep Mining Queensland Project Location

Eastern Fold Belt between Cloncurry & Osborne

approx 180x50km
Regional vs Detailed Magnetics

GA Mag tmi-rtp v6 (2015) 80m grid

Chinova detailed Mag merge vrmi-2vd (201x) 10m grid

Very significant difference in resolution

... has allowed a high fidelity interpretation

- package continuity
- package architecture
- faulting and fine structure
KEY POINTS

DMQ southern Cloncurry IOCG Belt

• IOCG-style mineralisation focuses within late Isan (D3-4), brittle, fracture-breccia networks that are controlled by local competency contrast & strain partitioning.

• D3-4 structuring comprises short-strike / small-displacement faults, and localised reactivation of older structures in contrast with, D2 faults which are regional in strike & commonly juxtapose packages of contrasting lithology & age.

(Dichotomy: D2 structure well imaged (mapping, seismic, geophysics ..) cf. D3-4 structures, likely highly seismic, but generally not well imaged!)

• In D3-4 time, crystallising granites (that drive the high temp, IOCG fluid systems) themselves locally play roles in strain partitioning which drives the brittle failure focusing IOCG mineralisation.

• Pre-orogenic architectures likely play critical roles in the geometries of intrusion, brittle deformation, IOCG fluid circulation, & the localisation of ore formation.
Tectono-Stratigraphic Development of Eastern Fold Belt

Updated 2000 NWQMP Tx Chart
to reflect current understanding of EFB package relationships & latest geochronology (Withnall-Parsons, 2007-2009; NWQMEP, 2011)

Re-built EFB Solid Geology
highlighting packages & deformation events that impact their geometry
Marraba-Mitakoodi-Double Crossing Meta

~1765-1755Ma

FRF = Fountain Range Fault
PFZ = Pilgrim Fault Zone
HT = Highway Thrust
OF = Overhang Fault
CF = Cloncurry Fault
~1755-1740 Ma

Corella

FRF = Fountain Range Fault
PFZ = Pilgrim Fault Zone
HT = Highway Thrust
OF = Overhang Fault
CF = Cloncurry Fault
Mount Fort Constantine Volcanics

~1740Ma
WONGA Extension
~1740-1745Ma

FRF = Fountain Range Fault
PFZ = Pilgrim Fault Zone
HT = Highway Thrust
OF = Overhang Fault
CF = Cloncurry Fault
APWP for the Palaeo-MesoProterozoic of Northern Australia (Idnurm, 2000)

~1710Ma

OP1 Deformation

FRF = Fountain Range Fault
PFZ = Pilgrim Fault Zone
HT = Highway Thrust
OF = Overhang Fault
CF = Cloncurry Fault
~1710Ma
Roxmere

FRF = Fountain Range Fault
PFZ = Pilgrim Fault Zone
HT = Highway Thrust
OF = Overhang Fault
CF = Cloncurry Fault
Kuridala-Starccoss-Llewelyn

~1710-1680Ma

FRF = Fountain Range Fault
PFZ = Pilgrim Fault Zone
HT = Highway Thrust
OF = Overhang Fault
CF = Cloncurry Fault
Answer-Toole Creek
New Hope-Mt Norna
Kuridala-Starcross-Llewelyn
Barmera Clay
OP1
WONGA
Loralia
Marraba-Mitakoodi-DCM
Bulonga
Argylla

~1690-1650 Ma

THE UNIVERSITY OF QUEENSLAND
SMI BRC
W H Bryan Mining & Geology Research Centre
~1650Ma

FRF = Fountain Range Fault
PFZ = Pilgrim Fault Zone
HT = Highway Thrust
OF = Overhang Fault
CF = Cloncurry Fault
Isan D1 Folding & Thrusting
THIN-SKINNED

~1590-1575Ma

FRF = Fountain Range Fault
PFZ = Pilgrim Fault Zone
HT = Highway Thrust
OF = Overhang Fault
CF = Cloncurry Fault
Isan D2 Folding
THICK-SKINNED

~1555-1535Ma

FRF = Fountain Range Fault
PFZ = Pilgrim Fault Zone
HT = Highway Thrust
OF = Overhang Fault
CF = Cloncurry Fault
Surficial ± Formational Fluid Source IOCG Model

Williams Suite

early D3-4 Faulting

Cu-Au, Au-Cu, Mo-Cu

Barton & Johnson (2004), Williams et al. (2005), Williams et al. (2010)
~1515-1500Ma
Williams Suite
~1515-1500Ma
early D3-4 Faulting
疑惑 Ma
Quamby
Cu-Au, Au-Cu, Mo-Cu
~1545Ma
Williams Suite
~1555-1535Ma
late D3-4 Faulting
???? Ma
Quamby

Cu-Au, Au-Cu, Mo-Cu
Barton & Johnson (2004), Williams et al. (2005), Williams et al. (2010)
<1500Ma post Isan Faulting widespread
<1500Ma post Isan Faulting widespread & appears to reflect

... older, pre-orogenic architectures ‘significant crustal penetration & persistance’

NE architecture
Wonga-reactn>MFCV margin Mitakoodi culmination D2 folding D1 & D2 deformation partitioning post-Williams reactn

NW architecture
Williams margins D2 deformation partitioning post-Williams reactn

older NNW architecture
post-Williams reactn

>>> significant influence on IOCG mineral system geometry and ultimate sites of metal accumulation

FRF = Fountain Range Fault
PFZ = Pilgrim Fault Zone
HT = Highway Thrust
OF = Overhang Fault
CF = Cloncurry Fault
Starra-Merlin-Mount Dore
DMQ Interpretation (2016)

- unconformable onlap of Answer Slate
- D1 N’ward overthrust of Staveley over Answer
 - EW F1 folds; highly attenuated/folded MIF-HIF
 - preserves FW block architecture
- D2 folding of D1 overthrust into vertical
 - F1 fold sub-vertical vs sub-horiz F2 folds
- D3-4 shortening: transpressive BRITTLE reactivation
 - at Starra, footwall architecture contribution to fract-bx
 - at Merlin-Mt Dore, strain intensification
- post-mineral reverse faulting of MDG over M-MD

Eastern Fold Belt Timespace
Gradational stratigraphy:
Staveley-Roxmere-(SF)-Kuridala
Kuridala: carb silt dominant

D3 Faulting:
complex, curvilinear, anastomosing

Brittle, fracture & breccia
Damage Zones ...
... in carbonaceous silts & along reactivated contacts
.. host Cu mineralisation

D3 Faults ... small throws!
NOT Regional Structures

Granite Reverse Fault
highly planar, post-mineral, significant throw
Gradational stratigraphy:
Staveley-Roxmere-(SF)-Kuridala
Kuridala: phyllite dominant

D3 Faulting: complex, curvilinear, anastomosing brittle in calc-silicate, carb silt ductile (mylonitic) in phyllite

Brittle, fracture & breccia zones host Mo minz ...
.. along reverse fault where calc-silicate & carbonaceous silt are brecciated, and
.. where normal calc-silicate / carb silt contact is brecciated in FW & HW of reverse fault

D3 Faults ... small throws!
NOT Regional Structures

Granite Reverse Fault
highly planar, significant throw, post-mineral > reactivation > Mo-matrix breccias ...

Merlin molybdenite matrix breccia, from Kirwin (2009)
Mount Elliott - SWAN
Close proximity to ?D1 structure

... juxtaposes, with significant HW truncations, strong mag-character package against benign Staveley-Kuridala packages
Kuridala Fm (schists)

Staveley Fm (calc-silicates)

Squirrel Hills Granite

Eastern Fold Belt Timespace

Kuridala Fm

Staveley Fm

Roxmere Quartzite

Squirrel Hills Granite

Squirrel Hills Granite

SWAN diorite

?? Formation

> 0.25eq%Cu

> 1.0eq%Cu

> 2.0eq%Cu
SWAN - Mount Elliott - Corbould
2150mRL ... 250m below surface
SWAN 0.75eq%Cu
Long Section ... looking SW through SWAN

- post-mineral D3-4 Faults
- family cuts Squirrel Hills Granites
CONCLUSIONS

DMQ southern Cloncurry IOCG Belt

• Reliable geochronology suggests IOCG-style mineralisation forms during late orogenic, shallow-crustal, brittle, deformation (Isan D3-4)

• IOCG-style mineralisation forms via a complex interplay in the geometries of thermally-driven, circulation of (basinal) brines, and the contemporaneous Isan D3-4 patterns of brittle, fracture-breccia deformation

• Ore deposition is focused within brittle, breccia/fracture networks that are ubiquitously post-peak metamorphic

• Local competency contrasts & strain partitioning play critical roles in the geometries of brittle failure & ore localisation

• D3-4 faulting comprises short-strike / small-displacement faults, and localised reactivation of older structures

• Contrasts with D2 faults which are regional in strike & commonly juxtapose packages of contrasting lithology & age

(Dichotomy: D2 structure well imaged (mapping, seismic..) cf. D3-4 structures, likely highly seismic, but generally not well imaged!)

• In D3-4 time, crystallising granites (that drive the high temp IOCG fluid systems) themselves locally play roles in strain partitioning which drives the brittle failure that focuses IOCG mineralisation

• Subtle pre-orogenic, (potentially depositional), architectures play critical roles in: (1) (Isan) deformation partitioning, (2) intrusion geometry, and (3) IOCG-forming, fluid circulation patterns ... and therefore, strongly impact on localisation of IOCG ore formation

DMQ Project going forward, aims to tease these controls & interplays into 3D!